Identification and distribution of new insertion sequences in the genome of the extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831.

نویسندگان

  • Yoshihiro Takaki
  • Akiko Matsuki
  • Gab-Joo Chee
  • Hideto Takami
چکیده

Six kinds of new insertion sequences (ISs), IS667 to IS672, a group II intron (Oi.Int), and an incomplete transposon (Tn852loi) were identified in the 3,630,528-bp genome of the extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831. Of 19 ISs identified in the HTE831 genome, 7 were truncated, indicating the occurrence of internal rearrangement of the genome. All ISs except IS669 generated a 4- to 8-bp duplication of the target site sequence, and these ISs carried 23- to 28-bp inverted repeats (IRs). Sequence analysis revealed that four ISs (IS669, IS670, IS671, and IS672) were newly identified as belonging to separate IS families (IS200/IS605, IS30, IS5, and IS3, respectively). IS667 and IS668 were also characterized as new members of the ISL3 family. Tn8521oi, which belongs to the Tn3 family as a new member, generated a 5-bp duplication of the target site sequence and carried complete 38-bp IRs. Of the eight protein-coding sequences (CDSs) identified in Tn8521oi, three CDSs (OB481, OB482, and OB483) formed a ger gene cluster, and two other paralogous gene clusters were found in the HTE831 genome. Most of the ISs and the group II intron widely distributed throughout the genome were inserted in noncoding regions, while two ISs (IS667-08 and IS668-02) and Oi.Int-04 were inserted in the coding regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge.

An extremely halotolerant and alkaliphilic bacterium was isolated previously from deep-sea sediment collected at a depth of 1050 m on the Iheya Ridge. The strain, designated HTE831 (JCM 11309, DSM 14371), was Gram-positive, strictly aerobic, rod-shaped, motile by peritrichous flagella, and spore-forming. Strain HTE831 grew at salinities of 0-21% (w/v) NaCl at pH 7.5 and 0-18% at pH 9.5. The opt...

متن کامل

Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments.

Oceanobacillus iheyensis HTE831 is an alkaliphilic and extremely halotolerant Bacillus-related species isolated from deep-sea sediment. We present here the complete genome sequence of HTE831 along with analyses of genes required for adaptation to highly alkaline and saline environments. The genome consists of 3.6 Mb, encoding many proteins potentially associated with roles in regulation of intr...

متن کامل

Molecular detection of Oceanobacillus iheyensis in sand of Brazilian beaches.

Oceanobacillus iheyensis strain HTE831 was isolated from deep sea mud (1,050 m) from the Iheya Ridge near Okinawa, Japan, in 1998 (Lu et al., 2001). This organism is an alkaliphilic and extremely halotolerant Bacillus-related species. Its genome has been completely sequenced and the presence of genes required for adaptation to these extreme environments was demonstrated (Takami et al., 2002). M...

متن کامل

Biochemical and Mutational Analysis of a Novel Nicotinamidase from Oceanobacillus iheyensis HTE831

Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia, an important reaction in the NAD(+) salvage pathway. This paper reports a new nicotinamidase from the deep-sea extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831 (OiNIC). The enzyme was active towards nicotinamide and several analogues, including the prodrug pyrazinamide. The enzyme was m...

متن کامل

Structural and functional analysis of Oceanobacillus iheyensis macrodomain reveals a network of waters involved in substrate binding and catalysis

Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • DNA research : an international journal for rapid publication of reports on genes and genomes

دوره 11 4  شماره 

صفحات  -

تاریخ انتشار 2004